Answer:
k= (4+3*sqrt(22))/13 or k= (4-3*sqrt(22))/13).
Explanation:
2k(7-5k)+11=6k+3(k^2-1)
We move all terms to the left:
2k(7-5k)+11-(6k+3(k^2-1))=0
We add all the numbers together, and all the variables
2k(-5k+7)-(6k+3(k^2-1))+11=0
We multiply parentheses
-10k^2+14k-(6k+3(k^2-1))+11=0
We calculate terms in parentheses: -(6k+3(k^2-1)), so:
6k+3(k^2-1)
We multiply parentheses
3k^2+6k-3
Back to the equation:
-(3k^2+6k-3)
We get rid of parentheses
-10k^2-3k^2+14k-6k+3+11=0
We add all the numbers together, and all the variables
-13k^2+8k+14=0
a = -13; b = 8; c = +14;
Δ = b2-4ac
Δ = 82-4·(-13)·14
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
k1=−b−Δ√2ak2=−b+Δ√2a
The end solution:
Δ−−√=792−−−√=36∗22−−−−−−√=36−−√∗22−−√=622−−√
k1=−b−Δ√2a=−(8)−622√2∗−13=−8−622√−26
k2=−b+Δ√2a=−(8)+622√2∗−13=−8+622√−26