41.3k views
2 votes
Solve
Sin(2theta)=1/2

2 Answers

2 votes
sin(2theta)=1/2

sin(x)=α
x=(-1)^k arcsin α+πk

2theta=(-1)^k arcsin 1/2 + πk k∈Z
arcsin 1/2= π/6
2theta=(-1)^k π/6 + πk k∈Z
theta=(-1)^k π/12 + πk/2 k∈Z


User BefittingTheorem
by
9.1k points
5 votes
Just change the fraction into an equivalent in the sine function.


sin(2\theta)= (1)/(2) \\ sin(2\theta)=sin( ( \pi )/(6)+2k \pi ) \\ 2\theta=( \pi )/(6)+2k \pi \\ \theta=( \pi )/(12)+k \pi \\ \\ sin(2\theta)= (1)/(2) \\ sin(2\theta)=sin( ( 15\pi)/(18)+2k \pi ) \\ 2\theta=( 15\pi )/(18) +2k \pi \\ \theta=( 15\pi )/(36)+k \pi

Therefore:


\boxed  \theta=( \pi )/(12)+k \pi ~or~ \theta=( 15\pi )/(36)+k \pi, k \epsilon Z)

If you notice any mistake in my english, please let me know, because i am not native.
User Deepak Lohmod
by
7.9k points

Related questions

1 answer
3 votes
225k views
1 answer
3 votes
184k views