217k views
3 votes
Find k if (x-3) is a factor of 


k^(2) x^(2) -kx-2.  

2 Answers

3 votes
k can be (-1/3) or (2/3).
since (x-3) is a factor. if you put x=3 in the equation, it must be equal to zero. So the equation becomes (9k2 - 3k -2 = 0). if you solve this you will get k=(-1/3) and k=(2/3). You can substitute this k in the original equation and check, (x-3) is a factor.
User Dyppl
by
8.3k points
2 votes

w(x)=k^2x^2-kx-2\\\\(x-3)\ is\ a\ factor\ w(x)\ then\ w(3)=0.\\\\Substitute:\\\\k^2\cdot3^2-k\cdot3-2=0\\9k^2-3k-2=0\\9k^2-6k+3k-2=0\\3k(3k-2)+1(3k-2)=0\\(3k-2)(3k+1)=0\iff3k-2=0\ \vee\ 3k+1=0\\3k=2\ \vee\ 3k=-1\\\\\underline{\underline{k=(2)/(3)\ \vee\ k=-(1)/(3)}}
User AlexDrenea
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories