123k views
4 votes
Find the number of sides of the regular polygon when the measure of an exterior angle is given.

1. 30°
2. 10°

User Allait
by
7.5k points

1 Answer

3 votes

1.\\exterior\angle=30^\circ\\ exterior\angle=180^\circ-interior\ angle\\ interior\angle=180^\circ-exterior\ angle=180^\circ -30^\circ=150^\circ\\ \\Formula\ for\ number\ of\ sides\ of\ regular\ polygon:\\\\ interior\angle= 180^\circ-(360^\circ)/(n)\\ 150^\circ=180^\circ-(360^\circ)/(n)\\ -30^\circ=-(360^\circ)/(n)\ |*n\\ -30^\circ\ *n=-360^\circ \ |:-30^\circ\\ n=12\\\\ Number\ of\ sides\ is\ 12.
2.\\exterior\angle=10^\circ\\ exterior\angle=180^\circ-interior\ angle\\ interior\angle=180^\circ-exterior\ angle=180^\circ -10^\circ=170^\circ\\ \\Formula\ for\ number\ of\ sides\ of\ regular\ polygon:\\\\ interior\angle= 180^\circ-(360^\circ)/(n)\\ 170^\circ=180^\circ-(360^\circ)/(n)\\ -10^\circ=-(360^\circ)/(n)\ |*n\\ -10^\circ\ *n=-360^\circ \ |:-10^\circ\\ n=36\\\\ Number\ of\ sides\ is\ 36.
User Vahanpwns
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories