123k views
4 votes
Find the number of sides of the regular polygon when the measure of an exterior angle is given.

1. 30°
2. 10°

User Allait
by
7.4k points

1 Answer

3 votes

1.\\exterior\angle=30^\circ\\ exterior\angle=180^\circ-interior\ angle\\ interior\angle=180^\circ-exterior\ angle=180^\circ -30^\circ=150^\circ\\ \\Formula\ for\ number\ of\ sides\ of\ regular\ polygon:\\\\ interior\angle= 180^\circ-(360^\circ)/(n)\\ 150^\circ=180^\circ-(360^\circ)/(n)\\ -30^\circ=-(360^\circ)/(n)\ |*n\\ -30^\circ\ *n=-360^\circ \ |:-30^\circ\\ n=12\\\\ Number\ of\ sides\ is\ 12.
2.\\exterior\angle=10^\circ\\ exterior\angle=180^\circ-interior\ angle\\ interior\angle=180^\circ-exterior\ angle=180^\circ -10^\circ=170^\circ\\ \\Formula\ for\ number\ of\ sides\ of\ regular\ polygon:\\\\ interior\angle= 180^\circ-(360^\circ)/(n)\\ 170^\circ=180^\circ-(360^\circ)/(n)\\ -10^\circ=-(360^\circ)/(n)\ |*n\\ -10^\circ\ *n=-360^\circ \ |:-10^\circ\\ n=36\\\\ Number\ of\ sides\ is\ 36.
User Vahanpwns
by
8.1k points