66.4k views
2 votes
Lim[(sqrt(cos(2x))-cubicrootof(cos(x))]/arctg(x^2) when x->0

User Xiay
by
8.1k points

1 Answer

3 votes

\lim\limits_(x\to0)\frac{√(cos2x)-\sqrt[3]{cosx}}{arctanx^2}=\left[(0)/(0)\right]\\\\De\ L'Hospital's\ rule:\\\\\lim\limits_(x\to0)\frac{√(cos2x)-\sqrt[3]{cosx}}{arctanx^2}=\lim\limits_(x\to0)\frac{(√(cos2x)-\sqrt[3]{cosx})'}{(arctanx^2)'}=(*)\\-------------------------------\\(√(cos2x)-\sqrt[3]{cosx})'=(-sin2x)/(√(cos2x))-\frac{-sinx}{3\sqrt[3]{cos^2x}}=\frac{-2sinxcosx\cdot3\sqrt[3]{cos^2x}+sinx√(cos2x)}{3√(cos2x)\cdot\sqrt[3]{cos^2x}}\\\\(arctanx^2)'=(2x)/(x^2+1)


-------------------------------\\(*)=\lim\limits_(x\to0)\frac{-6sinxcosx\sqrt[3]{cos^2x}+sinx√(cos2x)}{3\sqrt[3]{cos^2x}\cdot√(cos2x)}:(2x)/(x^4+1)\\\\=\lim\limits_(x\to0)\frac{-sinx(6cosx\sqrt[3]{cos^2x}-√(cos2x))}{3\sqrt[3]{cos^2x}\cdot√(cos2x)}\cdot(x^4+1)/(2x)\\\\=\lim\limits_(x\to0)(-sinx)/(x)\cdot\frac{(6cosx\sqrt[3]{cos^2x}-√(cos2x))(x^4+1)}{6}=-1\cdot\frac{(6\cdot1\sqrt[3]{1^2}-\sqrt1)(0+1)}{6}\\\\=-1\cdot(5)/(6)=-(5)/(6)
User Antfish
by
8.8k points

No related questions found