38.4k views
4 votes
What is the solution set of the equation 30/x^2-9 +1=5/x-3

A. {2,3}
B.{2}
C.{3}
D.{ }

User Ryan Yiada
by
7.9k points

2 Answers

5 votes

(30)/( x^(2) +9) +1= (5)/(x-3) \\ \\ x^(2) -9=x^2+3^2=(x+3)(x-3) \\ 1= ( x^(2) -9)/((x+3)(x-3)) \\ \\ (30)/( (x+3)(x-3)) + ( x^(2) -9)/((x+3)(x-3))= (5)/(x-3) \\ (30)/( (x+3)(x-3)) + ( x^(2) -9)/((x+3)(x-3))- (5(x+3))/((x-3)(x+3)) =0\\ (30+x^2-9-5(x+3))/( (x+3)(x-3))=0 \\ \\ 30+ x^(2) -9-5x-15=0 \\ x+3 \\eq 0 \\ x-3 \\eq 0 \\ \\ x^(2) -5x+6=0 \\ x \\eq -3 \\ x \\eq 3 \\


x^(2) -5x+6=0 \\ x_1+x_2=5 \\ x_1x_2=6 \\ x_1=2 \\ x_2=3 \\ \\ x \\eq 3 \\ \\ x=2


B.{2}


User Dizzi
by
8.1k points
4 votes

(30)/(x^(2) - 9 + 1) = (5)/(x - 3) \\(30)/(x^(2) - 8) = (5)/(x - 3) \\5(x^(2) - 8) = 30(x - 3) \\5(x^(2)) - 5(8) = 30(x) - 30(3) \\5x^(2) - 40 = 30x - 90 \\5x^(2) + 50 = 30x \\5x^(2) - 30x + 50 = 0 \\5(x^(2)) - 5(6x) + 5(10) = 0 \\5(x^(2) - 6x + 10) = 0 \\(5(x^(2) - 6x + 10))/(5) = (0)/(5) \\x^(2) - 6x + 10 = 0 \\x = \frac{-(-6) \± \sqrt{(-6)^(2) - 4(1)(10)}}{2(1)} \\x = (6 \± √(36 - 40))/(2) \\x = (6 \± √(-4))/(2) \\x = (6 \± 2i)/(2) \\x = 3 \± i \\x = 3 + i\ or\ x = 3 - i

The answer is D.
User Npit
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories