210,567 views
11 votes
11 votes
Consider the function.SX-9(0, 9/2)(a) Find the value of the derivative of the function at the given point.(b) Choose which differentiation rule(s) you used to find the derivative. (Select all that apply)Quotient rulepower ruleproduct rule

Consider the function.SX-9(0, 9/2)(a) Find the value of the derivative of the function-example-1
User Dimitrisk
by
2.7k points

1 Answer

20 votes
20 votes

Solution:

Given:


\begin{gathered} g(x)=(5x-9)/(x^2-2) \\ \\ Let\text{ }g(x)=(u)/(v) \\ u=5x-9 \\ v=x^2-2 \end{gathered}

Applying the quotient rule,


\begin{gathered} g^(\prime)(x)=(v(du)/(dx)-u(dv)/(dx))/(v^2) \\ v=x^2-2 \\ (du)/(dx)=5 \\ u=5x-9 \\ (dv)/(dx)=2x \\ \\ Hence, \\ g^(\prime)(x)=((x^2-2)(5)-(5x-9)(2x))/((x^2-2)^2) \end{gathered}

Expanding and simplifying further;


\begin{gathered} g^(\prime)(x)=(5x^2-10-(10x^2-18x))/((x^2-2)^2) \\ g^(\prime)(x)=(5x^2-10x^2-10+18x)/((x^2-2)^2) \\ g^(\prime)(x)=(-5x^2+18x-10)/((x^2-2)^2) \end{gathered}

Part A:

g'(0)


\begin{gathered} g^(\prime)(0)\text{ is the value of g\lparen x\rparen when x = 0} \\ Substitute\text{ x = 0 into g'\lparen x\rparen} \\ g^(\prime)(0)=(-5(0^2)+18(0)-10)/((0^2-2)^2) \\ g^(\prime)(0)=(-10)/((-2)^2) \\ g^(\prime)(0)=(-10)/(4) \\ g^(\prime)(0)=-2.5 \end{gathered}

Therefore, g'(0) = -2.5

Part B:

The differentiation rules used to find the derivative are the quotient rule and power rule.

User Dawnoflife
by
2.6k points