31.5k views
19 votes
Please please help me out

Given t4 = 187.5 and r = 2.5

a. Find the value of t1.

b. Write an explicit formula for this sequence.

c. Find the value of t18.

1 Answer

6 votes

Answer:

a)
t_(1) = 12

b) The explicit formula


t_(n) = ar^(n-1) = 12(2.5)^(n-1)

c) t₁₈ = 69,849,193.096

Explanation:

Step(i):-

Given that the geometric sequence

r = 2.5

Given the fourth term of the geometric sequence


t_(4) = ar^(3) = 187.5

⇒ ar³ = 187.5

⇒ a (2.5)³ = 187.5


a = (187.5)/((2.5)^(3) ) = 12

The explicit formula


t_(n) = ar^(n-1) = 12(2.5)^(n-1)

Step(ii):-

put n=1


t_(1) = ar^(1-1) = 12(2.5)^(1-1) = 12 (2.5)^(0) = 12

The
18^(th) of the geometric sequence


t_(18) = ar^(18-1) = a r^(17)


t_(18) = 12( 2.5)^(17)

t₁₈ = 69,849,193.096

Final answer:-

a)
t_(1) = 12

b) The explicit formula


t_(n) = ar^(n-1) = 12(2.5)^(n-1)

c) t₁₈ = 69,849,193.096

User Juan Ramos
by
3.5k points