151k views
4 votes
Find the vertex, focus, and directrix. y = 1/24(x+1)² - 3.

User Escher
by
8.1k points

2 Answers

0 votes

the\ equation\ in\ the\ form\ (x-h)^2=4p(y-k)\ is \ a\ parabola\\with\ a\ vertex\ at\ \ (h,\ k), \\a\ focus\ at\ \ (h,k+p)\\\ and\ a\ directrix\ \ y = k - p \\\\ y = 1/24(x+1)^2 - 3\ \ \ \ \Rightarrow\ \ \ y+3 = 1/24(x+1)^2\ /\cdot24\\\\ 24\cdot(y+3)=(x+1)^2\\\\(x+1)^2=4p(y+3)\ \ \Rightarrow\ \ 4p=24\ \ \Rightarrow\ \ p=6\ \ \ and\ \ \ h=-1,\ k=-3\\\\the\ vertex:\ \ \ (h;\ k)=(-1;\ -3)\\\\the\ focus:\ \ \ (h;\ k+p)=(-1;\ -3+6)=(-1;\ 3)\\\\the\ directrix:\ \ \ y=k-p\ \ \ \Rightarrow\ \ \ y=-3-6=-9
User Milianw
by
9.0k points
7 votes

y = (1)/(24)(x+1)^2 - 3\\\\y+3 =(1)/(24)(x+1)^2\ \ / *24\\\\ (x+1)^2 = 24(y+3)

This is an equation of a parabola that opens upwards.


Its \ standard \ form: \\(x-h)^2=4p(y-k)\\ (h,k)=(x,y) \ coordinates \ of \ the \ vertex\\\ (h,k)=(-1,-3) \\\\axis \ of \ symmetry: \ x= -1\\ \\4p=24\ \ /:4\\p=6


focus:(h,k+p)=(-1,-3+6)=(-1,3) \\ \\directrix: \ y=k-p=-3-6=-9


Find the vertex, focus, and directrix. y = 1/24(x+1)² - 3.-example-1
User Compie
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories