106,375 views
17 votes
17 votes
Find the linear approximation to f(x)=10-3x^2 at a=-2

User Jdelange
by
2.9k points

1 Answer

23 votes
23 votes

Solution:

Given the function;


f(x)=10-3x^2

The linear approximation formula is;


y=f(x)=f(a)+f^(\prime)(a)(x-a)

Where;


a=-2

Then, the derivative is;


f^(\prime)(x)=-6x
\begin{gathered} f(a)=f(-2)=10-3(-2)^2 \\ f(a)=10-3(4)_{} \\ f(a)=10-12 \\ f(a)=-2 \end{gathered}

Also,


\begin{gathered} f^(\prime)(a)=f^(\prime)(-2)=-6(-2) \\ f^(\prime)(a)=12 \end{gathered}

Thus, the linear approximation is;


\begin{gathered} y=-2+12(x-(-2)) \\ y=-2+12(x+2) \\ y=-2+12x+24 \\ y=f(x)=12x+22 \end{gathered}

FINAL ANSWER:


f(x)=12x+22

User Bill Greer
by
3.3k points