Answer
f(h(-3) = 23
Step-by-step explanation:
Given that
f(x) = 5x - 10
g(x) = 1/3x - 1
h(x) = x^2 + 4x
Find f(h(-3))?
Firstly, substitute the function of h(x) into f(x)
f(h(x) = 5(x^2 + 4x) - 10
f(h(x) = 5x^2 + 4x - 10
f(h(-3)) implies that substitute x with 3
f(h(-3)) = 5(-3)^2 + 4(-3) - 10
f(h(-3)) = 5(9) + 4(-3) - 10
f(h(-3) = 45 - 12 - 10
f(h(-3) = 23