89.1k views
1 vote
6. Minimum value determined by the formula function f (x) = 2x ²-8x + p was 20. Value f (2) is.

7. Shape factor of the quadratic equation 4x ²-13x = -3 is ...
8. Quadratic function whose graph passes through the point (-12.0) and has a turning point (-15.3) is ..
9. Roots of a quadratic equation: 4x ² + px +25 = 0 are x1 and x2, if the roots of the quadratic equation x1 ² + x2 ² = 12.5 then the value of p is ....
10. Equation x ²-4x +3 = 0 and x ² +4 x-21 = 0, has a root persekutuan.Akar the alliance is 

User Jonstaff
by
7.3k points

1 Answer

6 votes

6)\ \ \ f(x)=2x^2-8x+p\\the\ minimum\ value =20\ \ \ \Leftrightarrow\ \ \ y_(\ of\ vertex)=20\ \ \ \Leftrightarrow\ \ \ - (\Delta)/(2a) =20\\\\\Delta=(-8)^2-4\cdot2\cdot p=64-8p\ \ \Leftrightarrow\ \ - (64-8p)/(2\cdot2) =20\ \ \Leftrightarrow\ \ -16+2p=20\\\\2p=36\ \ \ \Leftrightarrow\ \ \ p=18\ \ \ \Rightarrow\ \ \ \ f(x)=2x^2-8x+18\\\\f(2)=2\cdot2^2-8\cdot2+18=2\cdot4-16+18=8+2=10


7)\ the\ shape\ factor\ of\ the\ quadratic\ equation\ 4x^2-13x = -3\\ is\ a=4\ \ \ (\ a>0\ \ \ \rightarrow\ \ \ the\ shape\ is\ \cup\ )\\\\8)\ \ \ the\ turning\ point=(-15;3)\ \ \ \Rightarrow\ \ \ f(x)=a(x+15)^2+3\\\\ the\ graph\ passes\ through\ the\ point\ (-12.0) \ \Rightarrow\ \ 0=a(-12+15)^2+3\\\\\Rightarrow\ \ \ a\cdot3^2=-3\ \ \ \Rightarrow\ \ \ a=- (3)/(9) =- (1)/(3) \ \ \ \Rightarrow\ \ \ f(x)=- (1)/(3)(x+15)^2+3


\Rightarrow\ \ \ f(x)=- (1)/(3)(x^2+30x+225)+3=- (1)/(3)x^2-10x-72\\\\9)\ \ \ 4x^2+px+25=0\\\\\Delta=p^2-4\cdot4\cdot25=p^2-400\\\\two\ solutions\ \ \Leftrightarrow\ \ \Delta>0\ \ \Leftrightarrow\ \ p^2-40>0\ \ \Leftrightarrow\ \ (p-20)(p+20)>0\\.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Leftrightarrow\ \ \ p\in(-\infty;\ -20)\ \cap\ (20;\ +\infty)\\-------------------------------


the\ Vieta's\ formulas\ to\ the\ quadratic\ equation\ ax^2+bx+c=0\\\\x_1+x_2=- (b)/(a) \ \ \ and\ \ \ x_1\cdot x_2= (c)/(a) \\------------------------------\\\\x_1+x_2=- (p)/(4) \ \ \ and\ \ \ x_1\cdot x_2= (25)/(4) \\\\x_1^2+x_2^2=x_1^2+2\cdot x_1\cdot x_2 +x_2^2-2\cdot x_1\cdot x_2 =(x_1+x_2)^2-2\cdot x_1\cdot x_2 \\\\x_1^2+x_2^2=(x_1+x_2)^2-2\cdot x_1\cdot x_2 \ \ \ \Leftrightarrow\ \ \ 12.5=(- (p)/(4) )^2-2\cdot (25)/(4) \\\\


12.5= (p^2)/(16) +12.5 \ \ \ \Leftrightarrow\ \ \ (p^2)/(16)=0 \ \ \ \Leftrightarrow\ \ \ p^2=0 \ \ \ \Leftrightarrow\ \ \ p=0\\\\\\10)\ \ \ x^2-4x+3=0\ \ \ and\ \ \ x^2+4x-21=0\\\\ x^2-4x+3=x^2+4x-21\ \ \Leftrightarrow\ \ -4x-4x=-21-3\\\\\ \ \Leftrightarrow\ \ -8x=-24\ \ \Leftrightarrow\ \ x=3
User Alberta
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories