Answer:
b = 8.89, c = 11.96 and m∠B = 48°
Explanation:
From the given triangle ABC,
We will apply sine ratio for angle A,
sin(A) =

sin(42)° =

sin(42)° =

AB =

AB = 11.96
c = 11.96
By triangle sum theorem,
m∠A + m∠B + m∠C = 180°
42° + m∠B + 90° = 180°
m∠B = 180 - 132
m∠B = 48°
By cosine ratio of angle A,
cos(A) =

cos(42)° =

AC = AB.cos(42)°
AC = (11.96)cos(42)°
AC = 8.89
b = 8.89