359,161 views
35 votes
35 votes
Calculate final velocities assuming perfectly inelastic collisions.Row 7 and 8

Calculate final velocities assuming perfectly inelastic collisions.Row 7 and 8-example-1
User Jesper
by
2.9k points

1 Answer

23 votes
23 votes

Answer:

Row 7.

V1f = 0.1818 m/s

V2f = 0.1818 m/s

Row 8

V1f = 0.333 m/s

V2f = 0.333 m/s

Step-by-step explanation:

When there is a perfectly inelastic collision, the objects stick together after the collision, so they will have the same final velocity. So, to find the missing values, we can use the following equation


\begin{gathered} p_i=p_f \\ M_1V_(1i)+M_2V_(2i)=(M_1+M_2)V_f \end{gathered}

Solving for Vf, we get:


V_f=(M_1V_(1i)+M_2V_(2i))/(M_1+M_2)

Now, for row 7, we get M1 = 5 kg, V1i = 2m/s, M2 = 50kg and V2i = 0m/s, so the final velocity is


\begin{gathered} Vf=\frac{(5\operatorname{kg})(2m/s)+(50\operatorname{kg})(0m/s)}{5\operatorname{kg}+50\operatorname{kg}} \\ Vf=\frac{10\operatorname{kg}\text{ m/s}}{55\operatorname{kg}}=0.1818\text{ m/s} \end{gathered}

In the same way, for row 8, we get M1 = 10 kg, V1i = 2 m/s, M2 = 50 kg and V2i = 0 m/s, so


\begin{gathered} Vf=\frac{(10\operatorname{kg})(2m/s)+(50\operatorname{kg})(0m/s)}{10\operatorname{kg}+50\operatorname{kg}} \\ Vf=\frac{20\operatorname{kg}m/s}{60\operatorname{kg}}=0.333\text{ m/s} \end{gathered}

Therefore, the answers are:

Row 7.

V1f = 0.1818 m/s

V2f = 0.1818 m/s

Row 8

V1f = 0.333 m/s

V2f = 0.333 m/s

User Ubermonkey
by
2.5k points