Answer:
The equation of the line is:
![y -1= 5(x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/ye7kejhed7q4mm60lanm69ug3glgfkwdm0.png)
Explanation:
Given
Pass through
![(2,-1)](https://img.qammunity.org/2022/formulas/mathematics/college/viuco98fijqingx8o7p15zy02st9c8lvf6.png)
Parallel to:
![y= 5x - 2](https://img.qammunity.org/2022/formulas/mathematics/college/ubbr0c6usa58srtn41rgk4qmetq3sl2ww0.png)
Required
Determine the equation in point slope form
An equation has a general form:
![y = mx + c](https://img.qammunity.org/2022/formulas/mathematics/high-school/mpsydhdqmt6eheycm3xmw9eeme8fwkngx1.png)
Where:
![m = slope](https://img.qammunity.org/2022/formulas/mathematics/high-school/yjrlw8z0cel4p7mherpmwo193dphycf45p.png)
Compare:
to
![y= 5x - 2](https://img.qammunity.org/2022/formulas/mathematics/college/ubbr0c6usa58srtn41rgk4qmetq3sl2ww0.png)
we have:
![m = 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/f3twlo5ekkiukjiajmw16s3jvkz4dypmwi.png)
Since the line is parallel to
, then they have the same slope of 5
The line equation is then calculated using:
![y -y_1= m(x - x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/vt6f4achheijyg4kfi7b6apie5hm8gldye.png)
Where
![m = 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/f3twlo5ekkiukjiajmw16s3jvkz4dypmwi.png)
![(2,-1)](https://img.qammunity.org/2022/formulas/mathematics/college/viuco98fijqingx8o7p15zy02st9c8lvf6.png)
So, we have:
![y -1= 5(x - 2)](https://img.qammunity.org/2022/formulas/mathematics/college/ye7kejhed7q4mm60lanm69ug3glgfkwdm0.png)