325,795 views
32 votes
32 votes
The height of a triangle is three more than two times the base. The area of the triangle is 45 square feet. What are the dimensions of the triangle? (solved by factoring)

User Yaguang
by
2.7k points

1 Answer

9 votes
9 votes

SOLUTION

Given the question in the tab, the following are the solution steps to answer the question.

STEP 1: Write the given data


\begin{gathered} Area=45ft^2 \\ 2\text{ times the base \lparen b\rparen}\Rightarrow2b \\ three\text{ more than two times the base \lparen b\rparen}\Rightarrow2b+3 \\ height(h)=2b+3 \end{gathered}

STEP 2: Write the formula for the are of a triangle


Area=(1)/(2)* base* height

STEP 3: Substitute the given values


\begin{gathered} Area=(1)/(2)* b* h=45ft^2 \\ By\text{ substitution,} \\ (1)/(2)* b* h=(bh)/(2) \\ Recall\text{ from step 1 that:} \\ h=2b+3 \\ By\text{ substitution,} \\ Area=(b(2b+3))/(2)=45 \end{gathered}

STEP 4: Cross multiply


\begin{gathered} b(2b+3)=2*45 \\ b(2b+3)=90 \end{gathered}

Open the bracket


2b^2+3b=90

Subtract 90 from both sides


2b^2+3b-90=0

STEP 5: Solve the derived equations using quadratic formula


\begin{gathered} b_1,b_2=(-b\pm√(b^2-4ac))/(2a) \\ a=2,b=3,c=-90 \\ By\text{ substitution,} \\ b_(1,\:2)=(-3\pm √(3^2-4\cdot \:2\left(-90\right)))/(2\cdot \:2) \\ √(3^2-4*2(-90))=√(9+720)=√(729)=27 \\ \\ \text{By substitution, we have:} \\ b_(1,\:2)=(-3\pm \:27)/(2\cdot \:2) \\ \mathrm{Separate\:the\:solutions} \\ b_1=(-3+27)/(2\cdot\:2)=(24)/(4)=6 \\ b_2=(-3-27)/(2\cdot\:2)=(-30)/(4)=-7.5 \\ \\ \therefore base=-7.5,6 \end{gathered}

Since the value of the base of a triangle can not be negative, the base of the triangle is 6ft

STEP 6: Find the value of the height


\begin{gathered} From\text{ step 3} \\ h=2b+3 \\ b=6ft \\ h=2(6)+3=12+3=15ft \end{gathered}

Hence, the dimension of the triangle are:

base = 6ft

height = 15ft

User Christopher Beck
by
2.7k points