215k views
3 votes
. Find the derivative of y = x² – 5x using the definition of the derivative.

1 Answer

11 votes

Answer:


\displaystyle y' = 2x - 5

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Expanding/Factoring

Functions

  • Function Notation

Calculus

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Differentiation

  • Derivatives
  • Derivative Notation
  • Definition of a Derivative:
    \displaystyle f'(x) = \lim_(h \to 0) (f(x + h) - f(x))/(h)

Step-by-step explanation:

Step 1: Define

Identify


\displaystyle y = x^2 - 5x

Step 2: Differentiate

  1. Substitute in function [Definition of a Derivative]:
    \displaystyle y' = \lim_(h \to 0) ([(x + h)^2 - 5(x + h)] - (x^2 - 5x))/(h)
  2. Expand:
    \displaystyle y' = \lim_(h \to 0) (x^2 + 2hx + h^2 - 5x - 5h - x^2 + 5x)/(h)
  3. Combine like terms:
    \displaystyle y' = \lim_(h \to 0) (2hx + h^2 - 5h)/(h)
  4. Factor:
    \displaystyle y' = \lim_(h \to 0) (h(2x + h - 5))/(h)
  5. Simplify:
    \displaystyle y' = \lim_(h \to 0) (2x + h - 5)
  6. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle y' = 2x + 0 - 5
  7. Simplify:
    \displaystyle y' = 2x - 5

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Nevin Paul
by
5.8k points