4.6k views
3 votes
Given the function T(z) = z – 6, find T(–4).

    A.10    
B.

–10    
C. 2    
D. –2

What is the range of the function: {(1, 2); (2, 4); (3, 6); (4, 8)}?    
A. {2, 4, 6, 8}  
 B. {1, 2, 3, 4}    
C. {6, 8}    
D. {1, 2, 3, 4, 6, 8}

What is the domain of the function: {(1, 3); (3, 5); (5, 7); (7, 9)}?    
A. {3, 5, 7, 9}    
B. {1, 3, 5, 7}    
C. {1, 9}    
D. {1, 3, 5, 7, 9}

Suppose p varies directly as d, and p = 2 when d = 7. What is the value of d when p = 10?    
A.   d =20/7      
B. d = 15    
C.   d =7/5       
D. d = 35

The number of calories burned, C, varies directly with the time spent exercising, t. When Lila bikes for 3 hours, she burns 900 calories. Which of the following equations shows this direct linear variation?    A. C = 300t    B. C = t    C. C = 3t    D. C = 900 t

1 Answer

3 votes

(1)\\T(z)=z-6\ \ \ \Rightarrow\ \ \ T(-4)=-4-6=-10\ \ \ \Rightarrow\ \ \ Ans.\ B.\\\\(2)\\range:\ \ \ Y=\{2;\ 4;\ 6;\ 8;\}\ \ \ \Rightarrow\ \ \ Ans.\ A.\\\\(3)\\domain:\ \ \ D=\{1;\ 3;\ 5;\ 7\}\ \ \ \Rightarrow\ \ \ Ans.\ B.\\\\(4)\\ (p)/(d) =constant\\\\(2)/(7) =(10)/(d) \ \ \ \Leftrightarrow\ \ \ 2d=7\cdot10\ \ \ \Leftrightarrow\ \ \ d= (7\cdot2\cdot5)/(2) =35\ \ \ \Rightarrow\ \ \ Ans.\ D.


(5)\\900\ calories\ \rightarrow\ 3\ hours\\x\ \rightarrow\ \ 1\ hour\\\\x= (900)/(3) \ calories=300\ calories\\\\C=300\cdot t\ \ \ \Rightarrow\ \ \ Ans. \ A.
User Pokrate
by
8.3k points