4.6k views
3 votes
Given the function T(z) = z – 6, find T(–4).

    A.10    
B.

–10    
C. 2    
D. –2

What is the range of the function: {(1, 2); (2, 4); (3, 6); (4, 8)}?    
A. {2, 4, 6, 8}  
 B. {1, 2, 3, 4}    
C. {6, 8}    
D. {1, 2, 3, 4, 6, 8}

What is the domain of the function: {(1, 3); (3, 5); (5, 7); (7, 9)}?    
A. {3, 5, 7, 9}    
B. {1, 3, 5, 7}    
C. {1, 9}    
D. {1, 3, 5, 7, 9}

Suppose p varies directly as d, and p = 2 when d = 7. What is the value of d when p = 10?    
A.   d =20/7      
B. d = 15    
C.   d =7/5       
D. d = 35

The number of calories burned, C, varies directly with the time spent exercising, t. When Lila bikes for 3 hours, she burns 900 calories. Which of the following equations shows this direct linear variation?    A. C = 300t    B. C = t    C. C = 3t    D. C = 900 t

1 Answer

3 votes

(1)\\T(z)=z-6\ \ \ \Rightarrow\ \ \ T(-4)=-4-6=-10\ \ \ \Rightarrow\ \ \ Ans.\ B.\\\\(2)\\range:\ \ \ Y=\{2;\ 4;\ 6;\ 8;\}\ \ \ \Rightarrow\ \ \ Ans.\ A.\\\\(3)\\domain:\ \ \ D=\{1;\ 3;\ 5;\ 7\}\ \ \ \Rightarrow\ \ \ Ans.\ B.\\\\(4)\\ (p)/(d) =constant\\\\(2)/(7) =(10)/(d) \ \ \ \Leftrightarrow\ \ \ 2d=7\cdot10\ \ \ \Leftrightarrow\ \ \ d= (7\cdot2\cdot5)/(2) =35\ \ \ \Rightarrow\ \ \ Ans.\ D.


(5)\\900\ calories\ \rightarrow\ 3\ hours\\x\ \rightarrow\ \ 1\ hour\\\\x= (900)/(3) \ calories=300\ calories\\\\C=300\cdot t\ \ \ \Rightarrow\ \ \ Ans. \ A.
User Pokrate
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories