170,939 views
12 votes
12 votes
Which choice is equivalent to the product below when x> 0? 3x xli 3x ОАА O A. ОВ. Ос. C. Ž O D. D. x 2.

Which choice is equivalent to the product below when x> 0? 3x xli 3x ОАА O A. ОВ-example-1
User Dayanithi Natarajan
by
2.6k points

1 Answer

12 votes
12 votes

We can use the following properties of radicals:


\begin{gathered} \sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\Rightarrow\text{ Product property} \\ \sqrt[n]{(a)/(b)}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\Rightarrow\text{ Quotient property} \end{gathered}

Then, we have:


\begin{gathered} \text{ Apply the product property} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=\sqrt[]{(3x\cdot x)/(2\cdot6)} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=\sqrt[]{(3x^2)/(12)} \\ \text{ Simplify the expression inside the radical} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=\sqrt[]{(3x^2)/(3\cdot4)} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=\sqrt[]{(x^2)/(4)} \\ \text{ Apply the quotient property} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=\frac{\sqrt[]{x^2}}{\sqrt[]{4}} \\ \sqrt[]{(3x)/(2)}\cdot\sqrt[]{(x)/(6)}=(x)/(2) \end{gathered}

Therefore, the choice that is equivalent to the given product when x > 0 is:


(x)/(2)

User Chandraprakash
by
2.6k points