223k views
3 votes

\sin ( \pi x)/(6) = x^(2) -6x+10

1 Answer

6 votes
The range of the sine function is
[-1,1], so:


x^2-6x+10\geq-1 \wedge x^2-6x+10 \leq1\\\\ x^2-6x+10\geq-1\\ x^2-6x+11\geq0\\ \Delta=(-6)^2-4\cdot1\cdot11=36-44=-8\\ x\in \mathbb{R}\\\\ x^2-6x+10\leq1\\ x^2-6x+9\leq0\\ (x-3)^2\leq0\\ (x-3)^2=0\\ x-3=0\\ x=3\\\\ x\in \mathbb{R} \wedge x=3\\ x=3

So 3 is the only possible value the function
x^2-6x+10 can take as an argument. Let's see if 3 is a solution.


\sin(\pi\cdot3)/(6)=3^2-6\cdot3+10\\ \sin (\pi)/(2)=9-18+10\\ 1=1

Therefore it is :)
User Leinir
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories