176k views
1 vote
What is the derivative of 2sinx and 2cos2x? i need to find the rules in finding derivative of such functions.

1 Answer

3 votes
One must use the chain rule to solve such problems:


\frac { dy }{ du } \cdot \frac { du }{ dx } =\frac { dy }{ dx }

One must also know that:


If\quad y=\sin { x } ,\quad \frac { dy }{ dx } =\cos { x } \\ \\ If\quad y=\cos { x } ,\quad \frac { dy }{ dx } =-\sin { x }

This means that:


y=2\sin { x } =2u\\ \\ \frac { dy }{ du } =2\\ \\ u=\sin { x } \\ \\ \frac { du }{ dx } =\cos { x } \\ \\ \therefore \quad \frac { dy }{ du } \cdot \frac { du }{ dx } =2\cos { x } =\frac { dy }{ dx }

And also:


y=2\cos { 2x } =2u\\ \\ \frac { dy }{ du } =2\\ \\ u=\cos { 2x } =\cos { p } \\ \\ \frac { du }{ dp } =-\sin { p=-\sin { 2x } } \\ \\ p=2x\\ \\ \frac { dp }{ dx } =2\\ \\ \frac { dp }{ dx } \cdot \frac { du }{ dp } =-2\sin { 2x } =\frac { du }{ dx } \\ \\ \therefore \quad \frac { dy }{ du } \cdot \frac { du }{ dx } =-4\sin { 2x } =\frac { dy }{ dx } \\
User Avadhuta
by
8.3k points

Related questions

asked Mar 23, 2017 174k views
Maxime ARNSTAMM asked Mar 23, 2017
by Maxime ARNSTAMM
8.0k points
1 answer
3 votes
174k views
2 answers
2 votes
66.0k views
asked May 18, 2024 74.0k views
Anil M H asked May 18, 2024
by Anil M H
7.9k points
1 answer
5 votes
74.0k views