150k views
4 votes
Verify the identity by transforming the left-hand side into the right-hand side.

(1 + cos² 3θ) / (sin² 3θ) = 2 csc² 3θ - 1

1 Answer

2 votes
(1 + cos² 3θ) / (sin² 3θ) = 2 csc² 3θ - 1

Starting with the left: Note that cos²θ + sin²θ = 1.
In the same way:
cos²3θ + sin²3θ = 1
Therefore cos²3θ = 1 - sin²3θ
From the top: (1 + cos² 3θ) = 1 + 1 - sin²3θ = 2 - sin²3θ

(1 + cos² 3θ) / (sin² 3θ) = (2 - sin²3θ) / (sin² 3θ) = 2/sin² 3θ - sin²3θ/sin²3θ

= 2/sin² 3θ - 1; But 1/sinθ = cscθ, Similarly 1/sin3θ = csc3θ

= 2 *(1/sin3θ)² - 1
= 2csc²3θ - 1. Therefore LHS = RHS. QED.

User Tranquillity
by
8.1k points