148k views
5 votes
Rewrite in simplest radical form
1 over x^-3/6
Show each step of your process.

User Caspert
by
8.3k points

1 Answer

6 votes

\frac{1}{x^{-(3)/(6)}}\\------------------\\-(3)/(6)=-(3:3)/(6:3)=-(1)/(2)\\\\use:\\\\(1)\ \left((1)/(a)\right)^n=(1)/(a^n)\\\\(2)\ a^(-n)=\left((1)/(a)\right)^n\\\\(3)\ a^(1)/(n)=\sqrt[n]{a}


\frac{1}{x^{-(3)/(6)}}=\frac{1}{x^{-(1)/(2)}}\to(1)\to\left((1)/(x)\right)^{-(1)/(2)}\to(2)\to\left((x)/(1)\right)^(1)/(2)=x^(1)/(2)\to(3)\to\boxed{\boxed{\sqrt[2]{x}=√(x)}}


Domain:\\x\\eq0\ and\ x\geq 0\Rightarrow x \ \textgreater \ 0\to x\in(0;\ \infty)
User Leo Le
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories