184k views
3 votes
What is the perimeter of a triangle with vertices located at (1, 3), (2, 6), and (0, 4), rounded to the nearest hundredth?

a. 7.40 units
b. 8.49 units
c. 9.07 units
d. 7.07 units

User Antiez
by
6.7k points

2 Answers

3 votes

Answer:

7.40 units

.....

5 votes
The perimeter of a triangle is the sum of the lengths of all sides.
Using the distance formula
d=√((x_2-x_1)^2+(y_2-y_1)^2) calculate the lengths of the sides and then add them up.


A=(1,3) \\ B=(2,6) \\ C=(0,4) \\ \\ \overline{AB}=√((2-1)^2+(6-3)^2)=√(1^2+3^2)=√(1+9)=√(10) \\ \overline{AC}=√((0-1)^2+(4-3)^2)=√((-1)^2+1^2)=√(1+1)=√(2) \\ \overline{BC}=√((0-2)^2+(4-6)^2)=√((-2)^2+(-2)^2)=√(4+4)=√(4 * 2)= \\ =2√(2) \\ \\ P=\overline{AB}+\overline{AC}+\overline{BC}=√(10)+√(2)+2√(2)=√(10)+3√(2) \approx 7.40

The answer is A.
User Pronngo
by
7.6k points