144k views
0 votes
Simplify this expression: cos t(sec t − cos t)

2 Answers

0 votes

\cos t \, (\sec t - \cos t)

= \cos t \, ((1)/(\cos t) - \cos t)

= 1 - \cos^2 t

= \bf sin^2 t
User Paul Hildebrandt
by
7.0k points
7 votes

Answer:

sin^2(t)

Explanation:

cos t(sec t − cos t)

To simplify this we use trigonometri identities


sec(x)= (1)/(cosx)

Replace sec t with 1/cos(t)


cos(t)((1)/(cos(t))-cos(t))

Distribute cos(t) inside the parenthesis


(cos(t))/(cos(t))-cos(t)*cos(t))

1- cos^2(t)

We know sin^2(x) + cos^2(x)= 1

so 1-cs^2(t)= sin^2(t)

User Jason Down
by
8.6k points

No related questions found