We are given the below equation
Open the parenthesis
x^2 + 20/ x^2 - 2x = 14 - x / x - 2
Introduce cross multiply
(x^2 + 20)(x - 2) = x2 - 2x(14 - x)
Open the parentheses
x^3 - 2x^2 + 20x - 40= 14x^2 - x^3 - 28x + 2x^2
Collect the like terms
x^3 - 2x^2 + 20x - 40 = 14x^2 + 2x^2 - x^3 - 28x
x^3 + x^3 - 2x^2 - 16x^2 + 28x - 40 = 0
2x^3 - 18x^2 + 28x - 40 = 0
2 is common so factorize 2 out
2(x^3 - 9x^2 + 14x - 20) = 0
2 = 0 or x^3 - 9x^2 + 14x - 20 = 0
x^3 - 9x^2 + 14x - 20 = 0