209k views
4 votes
The function f(x) = 2x2 + 3x + 5, when evaluated, gives a value of 19. What is the function’s input value?

1 Answer

2 votes

f(x)=\quad 2{ x }^( 2 )+3x+5

Let's called the input 'z'

When we plug 'z' in the function we get ;


f(z)=\quad 2{ z }^( 2 )+3z+5

And we know that, this is equal to 19, so ;


2{ z }^( 2 )+3z+5=\quad 19

Let's rearrange the equation.


2{ z }^( 2 )+3z+5=\quad 19\\ \\ 2{ z }^( 2 )+3z=\quad 19-5\\ \\ 2{ z }^( 2 )+3z=\quad 14\\ \\ 2{ z }^( 2 )+3z-14=\quad 0

So we have a quadratic equation here.

We'll use this formula to solve it :


\frac { -b\pm \sqrt { { b }^( 2 )-4ac } }{ 2a }

The formula is used in equation formed like this :


a{ x }^( 2 )+bx+c=0

In our equation,

a=2 , b=3 and c=-14

Let's plug in the values in the formula to solve,


a=2\quad b=3\quad c=-14\\ \\ \frac { -3\pm \sqrt { 9-(4\cdot 2\cdot -14) } }{ 4 } \\ \\ \frac { -3\pm \sqrt { 9-(-112) } }{ 4 } \\ \\ \frac { -3\pm \sqrt { 9+112 } }{ 4 } \\ \\ \frac { -3\pm \sqrt { 121 } }{ 4 } \\ \\ \frac { -3\pm 11 }{ 4 }

So,


z=\quad \frac { -3+11 }{ 4 } \quad ,\quad \frac { -3-11 }{ 4 } \\ \\ z=\quad \frac { 8 }{ 4 } \quad ,\quad \frac { -14 }{ 4 } \\ \\ z=\quad 2,\quad -\frac { 7 }{ 2 }

So the input can be both, 2 and
-(7)/(2)

User Mathivanan KP
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories