312,716 views
44 votes
44 votes
1. P(adult and vanilla)2. P(chocolate/adult)3. P(adult/chocolate)4. P(not vanilla/teen)5. P(teen/not vanilla)6. P(neither/teen or adult)7. P(teen or adult/neither)Answer the following problems about two way frequency tables and make sure to reduce your fraction.

1. P(adult and vanilla)2. P(chocolate/adult)3. P(adult/chocolate)4. P(not vanilla-example-1
User Darshak
by
3.0k points

1 Answer

20 votes
20 votes

From the given table, the total number of people, T=269.

1)

The number of adults who like vanila, N=54.

So, P(adult and vanilla) can be found as,


P\mleft(adult\text{ and vanilla}\mright)=(N)/(T)=(54)/(269)

2)

P(chocolate/adult) can be found as,


P\mleft(chocolate/adult\mright)=\frac{P(\text{choclate and adult)}}{P(\text{adult)}}=((55)/(269))/((119)/(269))=(55)/(269)

3)


P\mleft(adult/chocolate\mright)=\frac{P(\text{choclate and adult)}}{P(\text{chocolate)}}=((55)/(269))/((107)/(269))=(55)/(107)

4)


P\mleft(notvanilla/teen\mright)=\frac{P(not\text{ vanilla and t}een)}{P(\text{teen)}}=((12+45)/(2))/((73)/(269))=(57)/(73)

5)


P\mleft(teen/notvanilla\mright)=\frac{P(\text{teen and not vanilla)}}{P(\text{not vanilla)}}=((12+45)/(269))/((269-92)/(269))=(57)/(177)

6)


P\mleft(neither/teenoradult\mright)=\frac{P(\text{neither and teen or adult)}}{P(\text{teen or adult)}}=((45+10)/(269))/((73+119)/(269))=(55)/(192)

7)


P\mleft(teenoradult/neither\mright)=\frac{P(\text{teen or adult and neither)}}{P(\text{neither)}}=((45+10)/(269))/((70)/(269))=(55)/(70)=(11)/(14)

User Bendalton
by
3.0k points