26.2k views
4 votes
A rectangle whose perimeter is 80 m has an area of 384 m^2. Find the dimensions of the rectangle.

User Lisann
by
7.7k points

2 Answers

4 votes

2a+2b=80 \ /:2\ \ \ \Rightarrow\ \ \ \ a+b=40\ \ \ \Rightarrow\ \ \ a=40-b\\ \\a\cdot b=384\ \ \ \ \Rightarrow\ \ \ (40-b)\cdot b=384\ \ \ \ \Rightarrow\ \ \ -b^2+40b-384=0\\ \\ \Delta=40^2-4\cdot (-1)\cdot(-384)=1600-1536=64\ \ \ \Rightarrow\ \ \ √(\Delta) =8\\ \\b_1= (-40-8)/(2\cdot(-1))= (-48)/(-2) =24\ \ \ \ \Rightarrow\ \ \ a_1=40-b_1=40-24=16 \\ \\b_2= (-40+8)/(2\cdot(-1))= (-32)/(-2) =16\ \ \ \ \Rightarrow\ \ \ a_2=40-b_2=40-16=24


Ans.\ The\ dimensions\ of\ the\ rectangle:\ \ \ 16\ m\ \ \ and\ \ \ 24\ m
A rectangle whose perimeter is 80 m has an area of 384 m^2. Find the dimensions of-example-1
User Predator
by
8.2k points
5 votes
Since area of a rectangle = length X width I came up with an answer of 16 X 24 =384
Also, 16+16+24+24 = 80

User TheGoodUser
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories