7.3k views
1 vote
Suppose theta= 11pi/12. How do you use the sum identity to find the exact value of sin theta?

1 Answer

4 votes
The better way is, first we have to find the equivalent in degrees


2\pi=360\º


(11\pi)/(12)=345\º

now we can change this value to
-15\º

how do we get an angle like this?!


30\º-45\º=-15\º

then


sin(30\º-45\º)=sin(30\º)*cos(45\º)-sin(45\º)*cos(30\º)


\begin{Bmatrix}sin(30\º)&=&(1)/(2)\\\\sin(45\º)&=&cos(45\º)&=&(√(2))/(2)}\end{matrix}\\\\cos(30\º)&=&(√(3))/(2)\end{matrix}

now we replace this values


sin(-15\º)=(1)/(2)*(√(2))/(2)-(√(2))/(2)*(√(3))/(2)


sin(-15\º)=(√(2))/(4)-(√(6))/(4)


\boxed{\boxed{sin(-15\º)=sin(345\º)=(√(2)-√(6))/(4)}}
User Gregory Lancaster
by
9.5k points