207k views
0 votes
Which point lies on a circle that is centered at A(-3, 2) and passes through B(1, 3)?

C(-1, -2)

D(-6, 3)

E(-3, -3)

F(-2, 6)

1 Answer

1 vote
The equation of a circle:

(x-h)^2+(y-k)^2=r^2
(h,k) - the coordinates of the center
r - the radius


\hbox{the center: } A(-3,2) \\ h=-3 \\ k=2 \\ \\ \hbox{the equation:} \\ (x+3)^2+(y-2)^2=r^2 \\ \\ \hbox{the circle passes through B(1,3)} \\ x=1 \\ y=3 \\ \Downarrow \\ (1+3)^2+(3-2)^2=r^2 \\ 4^2+1^2=r^2 \\ 16+1=r^2 \\ 17=r^2 \\ \\ \hbox{the equation is:} \\ (x+3)^2+(y-2)^2=17

Plug the coordinates of the points into the equation and check:

C(-1,-2) \\ (-1+3)^2+(-2-2)^2=17 \\ 2^2+(-4)^2=17 \\ 4+16=17 \\ 20=17 \\ not \ true \\ \\ D(-6,3) \\ (-6+3)^2+(3-2)^2=17 \\ (-3)^2+1^2=17 \\ 9+1=17 \\ 10=17 \\ not \ true


E(-3,-3) \\ (-3+3)^2+(-3-2)^2=17 \\ 0^2+(-5)^2=17 \\ 25=17 \\ not \ true \\ \\ F(-2,6) \\ (-2+3)^2+(6-2)^2=17 \\ 1^2+4^2=17 \\ 1+16=17 \\ 17=17 \\ true

The answer is F(-2,6).
User Tandrewnichols
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories