210k views
2 votes
Let a=x^2+4. Use a to find the solutions for the following equation: (x^2+4)^2+32=12x^2+48. Which one of the following are solutions for x? Select any/all that apply. -8, -2, 4, 0, 2, -4, 8

Let a=x^2+4. Use a to find the solutions for the following equation: (x^2+4)^2+32=12x-example-1

2 Answers

1 vote

Answer:

-2,0,2

Explanation:

The given equation is:


(x^2+4)^(2)+32=12x^2+48


(x^2+4)^(2)+32=12(x^2+4)

Substituting
(x^2+4)=a in the above equation, we get


a^(2)+32=12a


a^2-12a+32=0


a^2-4a-8a+32=0


a(a-4)-8(a-4)=0


(a-8)(a-4)=0


a=8,4

Now,
(x^2+4)=a, then substituting the value of a in this equation,


x^(2)+4=8 and
x^2+4=4


x^(2)+4=8


x={\pm}2 and


x^(2)+4=4


x=0

Thus, the value of x are -2,0 and 2.

User Yauheni Leichanok
by
7.7k points
5 votes

(x^2+4)^2+32=12x^2+48 \\ (x^2+4)^2+32=12(x^2+4) \ \ \ |-12(x^2+4) \\ (x^2+4)^2-12(x^2+4)+32=0 \\ \hbox{substitute a for } x^2+4: \\ a^2-12a+32=0 \\ a^2-4a-8a+32=0 \\ a(a-4)-8(a-4)=0 \\ (a-8)(a-4)=0 \\ a-8=0 \ \lor \ a-4=0 \\ a=8 \ \lor \ a=4 \\ \\ \hbox{substitute 8 and 4 for a and solve for x:} \\ a=8 \\ \Downarrow \\ 8=x^2+4 \ \ \ |-4 \\ 4=x^2 \\ x=-2 \ \lor \ x=2 \\ \\ a=4 \\ \Downarrow \\ 4=x^2+4 \ \ \ |-4 \\ 0=x^2 \\ x=0 \\ \\ \boxed{x=-2 \hbox{ or } x=0 \hbox{ or } x=2}

The solutions for x are -2, 0, 2.
User Nikhil Fadnis
by
9.0k points

No related questions found