Answer:
Please check the explanation.
Explanation:
Given the expression
![8x^2y^3-18y](https://img.qammunity.org/2022/formulas/mathematics/college/dzmrc9ck0461uftp7xet05csurouz2fnqr.png)
Apply exponent rule:
![a^(b+c)=a^ba^c](https://img.qammunity.org/2022/formulas/mathematics/high-school/qcjb5qz26kpn7gt1lrz8fafe7dfqslyt63.png)
∵
![x^2y^3=yy^2](https://img.qammunity.org/2022/formulas/mathematics/college/ryh90anz9cxll2lb5pm9b1js8on85gbarc.png)
![=4\cdot \:2yy^2+9\cdot \:2y](https://img.qammunity.org/2022/formulas/mathematics/college/hol5kwnfshgaj37ktdms0bokvsx4ym3u77.png)
Factor out common term 2y
![=2y\left(4x^2y^2-9\right)](https://img.qammunity.org/2022/formulas/mathematics/college/tes73s4wtz3vfbmmnbk9ng3fhl8zuue0py.png)
We know that the Binomial is an expression that consists of two terms. Thus,
(4x²y²- 9) represents the binomial factor of
![8x^2y^3-18y](https://img.qammunity.org/2022/formulas/mathematics/college/dzmrc9ck0461uftp7xet05csurouz2fnqr.png)
We can further simplify by Factoring 4x²y² - 9: (2xy + 3) (2xy - 3)
![=2y\left(2xy+3\right)\left(2xy-3\right)](https://img.qammunity.org/2022/formulas/mathematics/college/wn91g2g7ry9mbqbs25dyoke32afn2znupr.png)
Here:
(2xy + 3) and (2xy -3) are the binomial factors of
as each of them consists of two terms.