152k views
5 votes
Sienna has 80 yards of fencing to enclose a rectangular area. Find the dimensions that maximize the enclosed area. What is the maximum area?

1 Answer

5 votes

2x+2y=80\ \ \ /:2\\\\2x:2+2y:2=80:2\\\\x+y=40\ \ \ /-x\\\\y=40-x\ \ \ (D_x:x\in(0;\ 40))


Area=xy\\\\substitute\ y=40-x\\\\Area=x(40-x)=-x^2+40\\(it's\ quadratic\ function\ where\ a=-1;b=40;c=0)\\\\vertex\ of\ parabola:p=(-b)/(2a)\to p=(-40)/(2\cdot(-1))=(-40)/(-2)=20-it's\ max\\\\x=20\ then\ y=40-20=20\\\\Answer:dimensions\ of\ rectangular\ is\ 20\ yd\ *\ 20\ yd,\\and\ area\ is\ 20^2=400\ yd^2.
Sienna has 80 yards of fencing to enclose a rectangular area. Find the dimensions-example-1
User Sherill
by
8.3k points