16.2k views
1 vote
A ladder of length 2x+1 feet is positioned against a wall such that bottom is x-1 feet away from a wall. The distance between the floor and top of the ladder is 2x. Assume that a right angle is formed by wall and the floor.

2 Answers

1 vote
pythagorean theorem
c^2 = a^2 + b^2

c = 2x+1
a = 2x
b = x-1

plug in and get:
(2x+1)^2 = (2x)^2 + (x-1)^2
4x^2 + 4x + 1 = 4x^2 + x^2 - 2x + 1 [distributed]
4x^2 + 4x + 1 = 5x^2 - 2x + 1 [added like terms]
x^2 - 6x = 0 [subtracted 4x^2 and 4x and 1]
x(x-6)=0 [factored out x]
x can equal 0 or 6

0 would not make any sense physically
therefore x = 6
plug this back into the length of the ladder 2x+1
2(6)+1 = 12 + 1 = 13

therefore the ladder is 13 feet long
User Carlitos Way
by
7.5k points
6 votes
so leangh of ladder=2x+1

bottom edgre=x-1
wall edge=2x

so therefor, since this is a right triangle, use pythagorean theorem
a^2+b^2=c^2
c=hypotonues=longest side
b and a=sides touching the right angle

so x-1 and 2x are a and b
2x+1=c

subsitute
(x-1)^2+(2x)^2=(2x+1)^2
x^2-2x+1+4x^2=4x^2+4x+1
add like terms
5x^2-2x+1=4x^2+4x+1
subtract 1 from both sdies
5x^2-2x=4x^2+4x
subtract 4x from both sdies
5x^2-6x=4x^2
subtract 4x^2 from both sides
x^2-6x =0
factor out the x using distributive property which is
ab+ac=a(b+c)
x^2-6x=x(x-6)
(x)(x-6)=0

if xy=0 then assume x and/or y=0
x=0
we remember that one of the side legnths is 2x and if x=0 then the side legnth=0 which is not possible, so we discard

x-6=0
add 6 to both sides
x=6

subsitute and solve


legnth of ladder=2x+1
x=6 subsitute
2(6)+1=12+1=13
legnth of ladder =13 feet

height=2x
2(6)=12
height=12 feet

base=x-1
6-1=5



legnth of ladder=13 feet
height=12 feet
base=5 feet
User Alexalejandroem
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories