What you need to do is get hold of the area underneath the curve y=x² from x=1 to x=0. You then spin this area 360 degrees about the x-axis and double the result as there is symmetry between y=x² and y=(x-2)².
Use the formula:

Ok, so let's solve the problem...
![V=2\int _( 0 )^( 1 ){ \pi { x }^( 4 ) } dx\\ \\ =2{ \left[ \frac { \pi { x }^( 4+1 ) }{ 4+1 } \right] }_( 0 )^( 1 )](https://img.qammunity.org/2016/formulas/mathematics/high-school/zi2qfv2h8ir9y31xoij3yrhbr3tkxxcpqe.png)
![\\ \\ =2{ \left[ \frac { \pi { x }^( 5 ) }{ 5 } \right] }_( 0 )^( 1 )\\ \\ =2\left\{ \left( \frac { \pi }{ 5 } \right) -\left( 0 \right) \right\} \\ \\ =\frac { 2 }{ 5 } \pi](https://img.qammunity.org/2016/formulas/mathematics/high-school/9p8tnmqx42qnkwqd5dslzxlx9evta172e5.png)
Answer:

units cubed.