181k views
3 votes
Simple question 

Derivative of 
\boxed{f(y)= (y^2)/(y^3+8) }

1 Answer

3 votes
Let's go ;D


f(y)=(y^2)/(y^3+8)

we have to use the quotient rule.


f(y)=(g(y))/(h(y))


f'(y)=(h(y)*g'(y)-g(y)*h'(y))/([h(y)]^2)

Then


g(y)=y^2


g'(y)=2y


h(y)=y^3+8


h(y)=3y^2

Now we can replace


f'(y)=(h(y)*g'(y)-g(y)*h'(y))/([h(y)]^2)


f'(y)=((y^3+8)*2y-(y^2)*3y^2)/((y^3+8)^2)


f'(y)=(2y^4+16y-3y^4)/((y^3+8)^2)


\boxed{\boxed{f'(y)=(16y-y^4)/((y^3+8)^2)}}
User Hisham
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories