181k views
3 votes
Simple question 

Derivative of 
\boxed{f(y)= (y^2)/(y^3+8) }

1 Answer

3 votes
Let's go ;D


f(y)=(y^2)/(y^3+8)

we have to use the quotient rule.


f(y)=(g(y))/(h(y))


f'(y)=(h(y)*g'(y)-g(y)*h'(y))/([h(y)]^2)

Then


g(y)=y^2


g'(y)=2y


h(y)=y^3+8


h(y)=3y^2

Now we can replace


f'(y)=(h(y)*g'(y)-g(y)*h'(y))/([h(y)]^2)


f'(y)=((y^3+8)*2y-(y^2)*3y^2)/((y^3+8)^2)


f'(y)=(2y^4+16y-3y^4)/((y^3+8)^2)


\boxed{\boxed{f'(y)=(16y-y^4)/((y^3+8)^2)}}
User Hisham
by
7.2k points