70.9k views
3 votes
Test yourself 2

15) if f''(x)=6x+6 and there is a stationary point at (0,3), find the equation of the curve

2 Answers

6 votes

f''(x)=6x+6\\ f'(x)=\int 6x+6\, dx\\ f'(x)=3x^2+6x+C\\\\ 0=3\cdot0^2+6\cdot0+C\\ 0=C\\ f'(x)=3x^2+6x\\\\ f(x)=\int 3x^2+6x\, dx\\ f(x)=x^3+3x^2+C\\\\ 3=0^3+3\cdot0^2+C\\ 3=C\\ \\\boxed{f(x)=x^3+3x^2+3}
User Hozefam
by
8.3k points
5 votes
Ok, so dy/dx=0 at the point (0,3) that is where x=0 and y=3.


\int { 6x+6dx } \\ \\ =\frac { 6{ x }^( 2 ) }{ 2 } +6x+C\\ \\ =3{ x }^( 2 )+6x+C


\\ \\ \therefore \quad { f }^( ' )\left( x \right) =3{ x }^( 2 )+6x+C

Now, f'(x)=0 when x=0.

Therefore:


0=C\\ \\ \therefore \quad { f }^( ' )\left( x \right) =3{ x }^( 2 )+6x

Now:


\int { 3{ x }^( 2 ) } +6xdx\\ \\ =\frac { 3{ x }^( 3 ) }{ 3 } +\frac { 6x^( 2 ) }{ 2 } +C


={ x }^( 3 )+3{ x }^( 2 )+C\\ \\ \therefore \quad f\left( x \right) ={ x }^( 3 )+3{ x }^( 2 )+C

But when x=0, y=3, therefore:


3=C\\ \\ \therefore \quad f\left( x \right) ={ x }^( 3 )+3{ x }^( 2 )+3
User PiyushRathi
by
8.1k points