8.5k views
0 votes
F(x)=x^3+ax^2+bx+3 where a and b are constants. bx Given that when f (x) is divided by (x+2) the remainder is 7, (a) show that 2a-b=6 Given also that when f (x) is divided by (x-1) the remainder is 4. (b) Find the value of a and the value of b

I don't know how solve it :(((((((

1 Answer

3 votes
Part I - First synthetic division

You need to use synthetic division to come up with an expression for a and b:

(x + 2) is a factor, and the remainder is 7, so we can draw a synthetic division table...

coefficients = 1 for X^3; A for X^2; B for X^1; and 3

-2 | 1 A B 3

-2 -2(A-2) 4(A-2)-2B

1 (A-2) -2(A-2)+B 4(A-2)-2B + 3

Remainder = 7

So...

4(A-2)-2B + 3 = 7

4 * (A - 2) - 2B + 3 = 7

4A - 8 - 2B = 4

4A - 2B = 12

2A - B = 6
Proved

-------------------------------------------------------------------------------------------------------------------
Part II - Second Synthetic Division

We draw another synthetic division table, this time with (x - 1), so the number on the left hand side will be +1

1 | 1 A B 3

1 (A+1) A+B+1

1 (A+1) A+B+1 A+B+4

Remainder = 4

So...

A + B + 4 = 4

A + B = 0

A = -B

-------------------------------------------------------------------------------------------------------------------
Part III - Solving for A and B with our two simultaneous equations

We know that A = -B and we also know that 2A - B = 6

Since we know that A is equal to -B We can substitute in A for -B, to get:

2A - B = 6

Therefore...

2A + A = 6

3A = 6

A = 2

Again, as we know that A = -B, and as we have found that A = 2, we can see:

A = -B

Therefore...

2 = -B

B = -2

So our final answer is A = 2, B = -2

Hopefully this answer is more useful than the last one, and isn't so confusing!

User Fody
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories