130k views
5 votes
Find an equation of the tangent line to the circle x^2 +y^2=24 at the point (-2 square root 5, 2).

1 Answer

7 votes

Circle:\\(x-a)^2+(y-b)^2=r^2\\\\Point:\\P(x_P;\ y_P)\\\\tangent\ line\ to\ the\ circle:\\\\k:(x_p-a)(x-a)+(y_p-b)(y-b)=r^2



Circle:\\x^2+y^2=24\\\\center\ of\ circle:S(0;\ 0)\\\\radius:r=√(24)\\\\Point:P(-2\sqrt5;\ 2)


tangent\ line\ to\ the\ circle:\\\\k:(-2\sqrt5-0)(x-0)+(2-0)(y-0)=(√(24))^2\\\\-2\sqrt5x+2y=24\\\\2y=2\sqrt5x+24\ \ \ \ /:2\\\\y=\sqrt5x+12-answer
User Martin Suchan
by
7.9k points

No related questions found