Answer:
C
Explanation:
Standard form of a Parabola that facing downwards, with focus, p and vertex (h,k)
![- (x - h) {}^(2) = 4p(y - k)](https://img.qammunity.org/2023/formulas/mathematics/college/z1bhybeqtokrha8agtokgyffx6n6wkncoi.png)
We know the vertex is (-4,-3) so we get
![- (x - ( - 4) {}^(2) = 4p(y - ( - 3)](https://img.qammunity.org/2023/formulas/mathematics/college/pd7gmjdsr6r6peq0hqj33hcxwrzg7rufj1.png)
![- (x + 4) {}^(2) = 4p(y + 3)](https://img.qammunity.org/2023/formulas/mathematics/college/9l5pp097sdayg5c8c7r4wpnqn16x5wr5x2.png)
Now we need to find the length of the focus.
The focus length is 1 because the distance from the vertex to focus is 1 so p=1
![- (x + 4) {}^(2) = 4(y + 3)](https://img.qammunity.org/2023/formulas/mathematics/college/3yzz4b0c99cifmd3rdia1abvp8ol9s4kea.png)
![- ( {x}^(2) + 8x + 16) = 4y + 12](https://img.qammunity.org/2023/formulas/mathematics/college/g1uzmay7j9r4iuzo8ffk1b1n8tpl15fuef.png)
![- {x}^(2) - 8x - 16 = 4y + 12](https://img.qammunity.org/2023/formulas/mathematics/college/ej69zgqka6vxxiz4ponmi1wdrk83c23f2b.png)
![- {x}^(2) - 8x - 28 = 4y](https://img.qammunity.org/2023/formulas/mathematics/college/t23f5ettu4rlv75murorgqz7d4uepafmfe.png)
![\frac{ - {x}^(2) }{4} - 2x - 7 = y](https://img.qammunity.org/2023/formulas/mathematics/college/17f74i1ebvvsbgzm744vqdk8csmcnnfuug.png)
C is the answer