167k views
3 votes
Find dy/dx if y= (1+x)e^x^2

2 Answers

3 votes
You first need to know that:


If\quad y=u\cdot v\\ \\ \frac { dy }{ dx } =u\frac { dv }{ dx } +v\frac { du }{ dx } \\ \\

Knowing that u is a function of x and that v is a function of x.

So:


y=\left( 1+x \right) { e }^{ { x }^( 2 ) }=u\cdot v\\ \\ u=1+x,\\ \\ \therefore \quad \frac { du }{ dx } =1


\\ \\ v={ e }^{ { x }^( 2 ) }={ e }^( p )\\ \\ \therefore \quad \frac { dv }{ dp } ={ e }^( p )={ e }^{ { x }^( 2 ) }\\ \\ p={ x }^( 2 )\\ \\ \\ \therefore \quad \frac { dp }{ dx } =2x


\\ \\ \therefore \quad \frac { dv }{ dp } \cdot \frac { dp }{ dx } =2x{ e }^{ { x }^( 2 ) }=\frac { dv }{ dx }

And this means that:


\frac { dy }{ dx } =\left( 1+x \right) \cdot 2x{ e }^{ { x }^( 2 ) }+{ e }^{ { x }^( 2 ) }\cdot 1\\ \\ =2x{ e }^{ { x }^( 2 ) }\left( 1+x \right) +{ e }^{ { x }^( 2 ) }


\\ \\ ={ e }^{ { x }^( 2 ) }\left( 2x\left( 1+x \right) +1 \right) \\ \\ ={ e }^{ { x }^( 2 ) }\left( 2x+2{ x }^( 2 )+1 \right) \\ \\ ={ e }^{ { x }^( 2 ) }\left( 2{ x }^( 2 )+2x+1 \right)
User Etki
by
8.6k points
3 votes

y=(1+x)e^(x^2)\\ y'=(1+x)'\cdot e^(x^2)+(1+x)\cdot(e^(x^2))'\\ y'=1\cdot e^(x^2)+(1+x)\cdot e^(x^2)\cdot (x^2)'\\ y'=e^(x^2)+(1+x)e^(x^2)\cdot2x\\ y'=e^(x^2)(1+(1+x)\cdot2x)\\ y'=e^(x^2)(1+2x+2x^2)\\ y'=e^(x^2)(2x^2+2x+1)\\
User Crook
by
9.0k points