199k views
5 votes
Is this an even or odd function? f(x)=5-3x

User Lizbeth
by
8.1k points

1 Answer

1 vote

f(x)=5-3x \\ x \in \mathbb{R}

A function is even if f(x)=f(-x) for every x in the domain.

f(x) \stackrel{?}{=} f(-x) \\ 5-3x \stackrel{?}{=} 5-3 * (-x) \\ 5-3x \stackrel{?}{=} 5+3x \\ -3x-3x \stackrel{?}{=} 5-5 \\ -6x \stackrel{?}{=} 0 \\ x \stackrel{?}{=} 0 \\ f(x)=f(-x) \Leftrightarrow x=0
f(x) is equal to f(-x) if and only if x=0, so the function isn't even.

A function is odd if -f(x)=f(-x) for every x in the domain.

-f(x) \stackrel{?}{=} f(-x) \\ -(5-3x) \stackrel{?}{=} 5-3 * (-x) \\ -5+3x \stackrel{?}{=} 5+3x \\ 3x-3x \stackrel{?}{=} 5+5 \\ 0 \stackrel{?}{=} 10 \\ 0 \\ot= 10 \\ -f(x) \\ot= f(-x)
-f(x) is never equal to f(-x), so the function isn't odd.

The function is neither even nor odd.
User Ranvel
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.