81.9k views
5 votes
Calculate the following limit:

Calculate the following limit:-example-1

1 Answer

7 votes

\lim_(x\to\infty)\frac{\sqrt x}{\sqrt{x+√(x+\sqrt x)}}=\\ \lim_(x\to\infty)\frac{(\sqrt x)/(\sqrt x)}{\frac{\sqrt{x+√(x+\sqrt x)}}{\sqrt x}}=\\ \lim_(x\to\infty)\frac{1}{\sqrt{(x+√(x+\sqrt x))/(x)}}=\\ \lim_(x\to\infty)\frac{1}{\sqrt{1+(√(x+\sqrt x))/(x)}}=\\ \lim_(x\to\infty)\frac{1}{\sqrt{1+(√(x+\sqrt x))/(√(x^2))}}=\\

\lim_(x\to\infty)\frac{1}{\sqrt{1+\sqrt{(x+\sqrt x)/(x^2)}}}=\\\lim_(x\to\infty)\frac{1}{\sqrt{1+\sqrt{(1)/(x)+(\sqrt x)/(√(x^4))}}}=\\\lim_(x\to\infty)\frac{1}{\sqrt{1+\sqrt{(1)/(x)+\sqrt{(x)/(x^4)}}}}=\\ \lim_(x\to\infty)\frac{1}{\sqrt{1+\sqrt{(1)/(x)+\sqrt{(1)/(x^3)}}}}=\\ =\frac{1}{\sqrt{1+\sqrt{0+√(0)}}}=\\

=(1)/(√(1+0))=\\ =(1)/(√(1))=\\ =(1)/(1)=\\ 1

User Berry Tsakala
by
8.9k points