170k views
3 votes
Ex 2.6
9. Find the stationary points on the curve y= (4x²-1)^4 and determine their nature

1 Answer

3 votes

y=(4x^2-1)^4\\ y'=4(4x^2-1)^3\cdot8x=32x(4x^2-1)^3\\\\ 32x(4x^2-1)^3=0\\ x=0 \vee 4x^2-1=0\\ 4x^2-1=0\\ 4x^2=1\\ x^2=(1)/(4)\\ x=-(1)/(2) \vee x=(1)/(2)\\ x\in\left\{-(1)/(2),0,(1)/(2)\right\}\leftarrow \text{stationary points}\\\\


y''=32((4x^2-1)^3+x\cdot3(4x^2-1)^2\cdot8x)\\ y''=32(4x^2-1)^2(4x^2-1+24x^2)\\ y''=32(4x^2-1)^2(28x^2-1)\\\\ y''(0)=32(4\cdot0^2-1)^2(28\cdot0^2-1)=32\cdot(-1)^2\cdot(-1)=-32

-32<0 \Rightarrow there's a (local) maximum at
x=0.

For
x\in\left\{-(1)/(2),(1)/(2)\right\},
y''=0 because the factor
(4x^2-1)^2=0.
You have to check values of
y' around
x\in\left\{-(1)/(2),(1)/(2)\right\}.


\forall x\in(\infty,-(1)/(2))\, y'<0 \Rightarrow y\searrow\\ \forall x\in(-(1)/(2),0)\, y'>0 \Rightarrow y\\earrow\\\\ \forall x\in(0,(1)/(2))\, y'<0 \Rightarrow y\searrow\\ \forall x\in((1)/(2),\infty)\, y'>0 \Rightarrow y\\earrow

The above means that at
x=-(1)/(2) and
x=-(1)/(2) there are (global) maxima.



User Bartosz Bialecki
by
8.4k points