170k views
3 votes
Ex 2.6
9. Find the stationary points on the curve y= (4x²-1)^4 and determine their nature

1 Answer

3 votes

y=(4x^2-1)^4\\ y'=4(4x^2-1)^3\cdot8x=32x(4x^2-1)^3\\\\ 32x(4x^2-1)^3=0\\ x=0 \vee 4x^2-1=0\\ 4x^2-1=0\\ 4x^2=1\\ x^2=(1)/(4)\\ x=-(1)/(2) \vee x=(1)/(2)\\ x\in\left\{-(1)/(2),0,(1)/(2)\right\}\leftarrow \text{stationary points}\\\\


y''=32((4x^2-1)^3+x\cdot3(4x^2-1)^2\cdot8x)\\ y''=32(4x^2-1)^2(4x^2-1+24x^2)\\ y''=32(4x^2-1)^2(28x^2-1)\\\\ y''(0)=32(4\cdot0^2-1)^2(28\cdot0^2-1)=32\cdot(-1)^2\cdot(-1)=-32

-32<0 \Rightarrow there's a (local) maximum at
x=0.

For
x\in\left\{-(1)/(2),(1)/(2)\right\},
y''=0 because the factor
(4x^2-1)^2=0.
You have to check values of
y' around
x\in\left\{-(1)/(2),(1)/(2)\right\}.


\forall x\in(\infty,-(1)/(2))\, y'<0 \Rightarrow y\searrow\\ \forall x\in(-(1)/(2),0)\, y'>0 \Rightarrow y\\earrow\\\\ \forall x\in(0,(1)/(2))\, y'<0 \Rightarrow y\searrow\\ \forall x\in((1)/(2),\infty)\, y'>0 \Rightarrow y\\earrow

The above means that at
x=-(1)/(2) and
x=-(1)/(2) there are (global) maxima.



User Bartosz Bialecki
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.