220k views
5 votes
a spherical balloon is deflated at a rate of 256pi/3 cm^3/sec. at what rate is the radius of the balloon changing when the radius is 8 cm?

1 Answer

7 votes
What you need to look for is
\frac { dr }{ dt } when r=8.

Now:


Volume\quad of\quad a\quad sphere:\\ \\ V=\frac { 4 }{ 3 } \pi { r }^( 3 )


\therefore \quad \frac { dV }{ dr } =\frac { 4 }{ 3 } \pi \cdot 3{ r }^( 2 )=4\pi { r }^( 2 )\\ \\ \therefore \quad \frac { dr }{ dV } =\frac { 1 }{ \frac { dV }{ dr } } =\frac { 1 }{ 4\pi { r }^( 2 ) }


And:\\ \\ \frac { dV }{ dt } =-\frac { 256\pi }{ 3 } \\ \\ Therefore:\\ \\ \frac { dr }{ dt } =\frac { dr }{ dV } \cdot \frac { dV }{ dt }


\\ \\ =\frac { 1 }{ 4\pi { r }^( 2 ) } \cdot -\frac { 256\pi }{ 3 } \\ \\ =-\frac { 256 }{ 12 } \cdot \frac { \pi }{ \pi } \cdot \frac { 1 }{ { r }^( 2 ) }


\\ \\ =-\frac { 64 }{ 3{ r }^( 2 ) } \\ \\ When\quad r=8,\\ \\ \frac { dr }{ dt } =-\frac { 64 }{ 3\cdot { 8 }^( 2 ) } =-\frac { 1 }{ 3 } \\ \\ Answer:\quad -\frac { 1 }{ 3 } \quad cm/sec
User Peter Baer
by
7.7k points