158k views
1 vote
I need the solution for: log(3x) = log 2 + log(x + 4)

2 Answers

6 votes

D:\\3x > 0\ and\ x+4 > 0\\x > 0\ and\ x > -4\\therefore\ D:x\in(-4;\ \infty)\\------------------\\log(3x)=log2+log(x+4)\ \ \ |use\ loga+logb=log(a\cdot b)\\\\log(3x)=log[2(x+4)]\iff3x=2(x+4)\\\\3x=2x+8\ \ \ \ |subtract\ 2x\ from\ both\ sides\\\\\boxed{x=8\in D}
User Split
by
8.9k points
2 votes

\hbox{the domain:} \\ 3x>0 \ \land \ x+4>0 \\ x>0 \ \land \ x>-4 \\ x \in (0,+\infty) \\ \\ \log(3x)=\log 2+\log(x+4) \\ 0=\log 2+ \log(x+4) - \log(3x) \\ 0=\log((2 * (x+4))/(3x)) \\ 0=\log((2x+8)/(3x)) \\ 10^0=(2x+8)/(3x) \\ 1=(2x+8)/(3x) \\ 3x=2x+8 \\ 3x-2x=8 \\ \boxed{x=8}
User Nyssa
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories