9.3k views
1 vote
Use basic identities to simplify the expression.

cosecant of theta times cotangent of theta divided by secant of theta.

User Emelina
by
8.4k points

2 Answers

4 votes
(csc*cot)/ sec

change everything into sin or cos and simplify

((1/sin)*(cos/sin))/ (1/cos)

=(cos/sin^2)/ (1/cos)

=(cos/sin^2) * (cos/1)

=cos^2/ sin^2
User Randell
by
8.8k points
4 votes

Answer:


cotg^(2) \theta

Explanation:

The given expression is:


(csc\theta (ctg\theta))/(sec\theta)

But, we know that:


csc\theta=(1)/(sin\theta)


ctg\theta = (cos\theta)/(sin\theta)


sec\theta=(1)/(cos\theta)

Replacing all these basic identities in the given expression, we have:


(csc\theta (ctg\theta))/(sec\theta)\\((1)/(sin\theta)(cos\theta)/(sin\theta))/((1)/(cos\theta))\\(cos^(2)\theta)/(sin^(2) \theta )\\((cos\theta)/(sin\theta))^(2)\\cotg^(2) \theta

User Amureki
by
8.5k points