116,076 views
13 votes
13 votes
What is the positive solution to 2x2 -4x -30.=0 ?

User Hokerie
by
2.7k points

1 Answer

11 votes
11 votes

Answer:


x=1+\frac{\sqrt[]{40}}{4}

Step-by-step explanation: Given the folllowing equation, we need its positive solution or root:


2x^2-4x-30=0

Solution by Quadratic formula:


x=\frac{-B\pm\sqrt[]{B^6-4AC}}{2S}\rightarrow(1)

Where x can be positive and negative, but we are interested in the positive solution.

Constants A B C in (1) are as follows:


\begin{gathered} A=2 \\ B=-4 \\ C=-30 \end{gathered}

Plugging these values in (1) gives us:


x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4(2)(-30)}}{2(2)}=\frac{4\pm\sqrt[]{16+(8)(30}}{4}

Firther simplification gives:


\begin{gathered} x=\frac{4\pm\sqrt[]{16+24}}{4}=\frac{4\pm\sqrt[]{40}}{4}\rightarrow positive\rightarrow x=\frac{4+\sqrt[]{40}}{4}=1+\frac{\sqrt[]{40}}{4} \\ \therefore\rightarrow \\ x=1+\frac{\sqrt[]{40}}{4} \end{gathered}

User Zaffiro
by
3.1k points