1) f(x) = 3x + 2 => f(2) = 3(2) + 2 = 6 + 2 = 8
2) f(x) =[ 2x - 7] / 3
To find the inverse of the function f(x), call y = f(x), and exchange y and x
y = [2x - 7] / 3
x = [2y - 7] / 3 => 2y - 7 = 3x => y = [3x + 7] / 2
y = f^-1(x) = [3x + 7] / 2
f^-1 (3) = [3(3) + 7 ] / 2 = (9+7) / 2 = 16 / 2 = 8
3) 2y + 14 = 4y - 2
4y - 2y = 14 + 2
2y = 16 => y = 16/2 = 8
Answer: the three statements have the same result